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a b s t r a c t

A procedure is presented for finding a number of the smallest eigenvalues and their asso-
ciated eigenvectors of large sparse Hermitian matrices. The procedure, a modification of an
inverse subspace iteration procedure, uses adaptively determined Chebyshev polynomials
to approximate the required application of the inverse operator on the subspace. The
method is robust, converges with acceptable rapidity, and can easily handle operators with
eigenvalues of multiplicity greater than one. Numerical results are shown that demon-
strate the utility of the procedure.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Inverse subspace iteration [14] is one of the commonly used procedures for finding the smallest eigenvalues and asso-
ciated eigenvectors of large sparse Hermitian matrices. Inverse iteration is an attractive method because for many prob-
lems the computational cost is proportional to the cost of solving linear systems of equations times the number of desired
eigenvalues and eigenvectors. General dense matrix procedures for finding eigenvalues and eigenvectors of N � N symmet-
ric matrices have an O(N3) computational cost and an O(N2) storage requirement, so that even for modest sized sparse
matrices, one expects inverse iteration to be much more efficient if the solution of the linear systems can be accomplished
in less than O(N3) operations. Moreover, the storage requirements of the method are minimal, the procedure converges
rapidly (especially when a good shift is chosen), and as the method is relatively easy to understand, non-experts in
computational linear algebra are likely to create successful implementations. This latter fact is important, as libraries of
reliable eigensystem routines may not be available for those exploring the use of new computational platforms. Also,
for those who work on more established computational platforms, pre-existing routines for the core computational
tasks—standard operations in computational linear algebra—are likely to be available so that efficient implementation
can be accomplished rather quickly.

Unfortunately, there is a fundamental problem with inverse subspace iteration when it is applied to large sparse matrices.
When shifts are chosen for optimal convergence rates, the procedure requires the solution of singular or nearly singular sys-
tems of equations. If one uses Gaussian elimination to solve these systems, then this singularity actually helps the compu-
tational process [14] (the errors introduced in the solution procedure are in the direction of the desired eigenvectors).
However, when standard iterative methods are used to solve the requisite system of equations the convergence rates are
. All rights reserved.
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typically reduced or the methods may even fail to converge. Additionally, the development of good preconditioners for these
iterative methods is complicated by the singular or nearly singular nature of the systems. Starting with work by [18], and
continuing with [5,17,20] this problem has been studied and procedures for avoiding the difficulties caused by the near sin-
gular behavior have been formulated. However, if one considers an inverse subspace iteration procedure where the requisite
solutions of the linear systems are computed with Krylov subspace based iterative methods [10] such as Conjugate-Gradi-
ents (CG) or generalized minimum residual (GMRES), then one recognizes that the approximations to the eigenvectors are
ultimately just polynomials in the operator applied to a particular collection of vectors. Essentially, when ‘‘good” shifts are
used, then the implicit determination of these polynomials by the Krylov iterative method is breaking down. In this paper,
the procedure that we present can be viewed as an implementation of an inverse subspace iteration procedure in which
polynomial transformations are still used, but the manner in which the polynomials are being determined is different from
that associated with a Krylov subspace iterative method. The net result is an efficient method that only requires matrix vec-
tor products, can readily take advantage of multi-processor machines, and has very good reliability properties. In particular,
the method will always converge if the initial vectors have components in the desired eigenvectors and can handle without
difficulty systems with eigenvalues of multiplicity greater than one.

In the next section we review inverse subspace iteration and present results demonstrating the typical problems that
arise when one solves the requisite linear systems using a standard implementation of a Conjugate-Gradient method. In
the third section we describe our procedure in general terms and then provide the details required for its implementation.
In the last section we present computational results. In addition to results of a computation of the eigenvalues of a discret-
ization of a 2D elliptic PDE we present results on the computation of the smallest eigenvalues and their associated eigenvec-
tors of a large (106 � 106) matrix arising from a Full Configuration Interaction (FCI) treatment of a multi-particle
Schroedinger equation. In this discussion we also describe the multi-processor implementation that was required to obtain
the computational results.

The procedure presented in this paper can be viewed or understood in many different ways. For example, in addition to
seeing it as a variant of inverse subspace iteration, it can also be viewed as a variant of general subspace iteration with
Chebyshev acceleration [14,19]. Our presentation was selected in an effort to motivate and describe the procedure in terms
that would be more readily understood by anyone familiar with inverse iteration—a topic typically covered in undergraduate
numerical analysis classes. The computation of the smallest eigenvalues of large sparse symmetric matrices is of consider-
able interest in quantum chemistry and quantum physics applications, and there are other types of methods that are com-
monly used. In particular, there are procedures [6,11,13,21,22,24] based on Davidson’s method [9] and procedures
[3,8,7,15,16,23] based on the Lanczos method. Of particular interest are the procedures described in [24], where adaptive
Chebyshev filtering is used in conjunction with Davidson’s method and [3] where Chebyshev filtering is used in conjunction
with a Lanczos procedure. Direct comparisons have not been carried out between these other procedures and the one pre-
sented here, but we conjecture that the computational efficiency of the Rayleigh–Chebyshev procedure should be close to
that of a block Lanczos procedure with re-orthogonalization.

In the following, when the task of finding the eigenvalues and eigenvectors of a matrix A is discussed, we will also refer to
A as a linear operator. We do this to emphasize that the method presented here only requires the evaluation of Av for input
vectors v—an explicit matrix representation of A is not required for the procedure.
2. Difficulties with inverse subspace iteration with shift

Inverse subspace iteration with a shift is a power method using the operator (A � r)�1 applied to a collection of vectors Sm
that are orthogonalized at each step. The value r is the ‘‘shift”. Approximations to the eigenvalues and eigenvectors closest
to r are obtained from the projection of the operator on Sm, e.g. by a Rayleigh–Ritz procedure. The method in its simplest
form is

Inverse subspace iteration with shift
Given an initial collection of M vectors, S0,
ðaÞ Compute Vm ¼ ðA� rIÞ�1Sm�1 by solving ðA� rIÞ v i
m ¼ si

m�1: ð1Þ

(b) Orthonormalize Vm ¼ QmRm by modified Gram–Schmidt.

(c) Form Hm ¼ QT

mAQm.
(d) Diagonalize Hm ¼ GT

mHmGm.
(e) Form Sm ¼ Q mGm the Rayleigh–Ritz approximations to the eigenvectors and test for the convergence of approximate

eigenvalues hm
i ; i ¼ 1 . . . M. If convergence has not been obtained, repeat iteration starting with (a) and m ¼ mþ 1.

When the solution of the linear systems (A � r) required to apply (A � r)�1 can be successfully computed, then the diag-
onal elements hðmÞi of Hm converge to the eigenvalues of A closest to r. If one seeks the smallest eigenvalues of A and desires
that (A � r) be positive definite to facilitate the iterative solution of the requisite linear equations, then r should be chosen to
be less than the smallest eigenvalue of A. (For a more efficient implementation of the algorithm that avoids the cost asso-
ciated with step (c) see [14].)

If ki are the eigenvalues of A, then for a fixed value of r the standard convergence results [14], show that the approximate
eigenvalues hðmÞi satisfy
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hðmÞi � ki

��� ��� ¼ O
ki � r

kMþ1 � r

����
����m

� �
i ¼ 1 . . . M ð2Þ
Thus, for the convergence factors, ki�r
kMþ1�r

��� ���, to have their smallest values, the best choice of r that preserves positive definite-

ness of the operator will be when r = kmin � � = k1 � �where � is a small positive value. Unfortunately, this choice of r results
in the operator (A � r) being nearly singular. As mentioned in the introduction, when solving the linear systems with Gauss-
ian elimination this singularity helps [14], rather than hurts, the computational procedure. However, when iterative methods
are used, this is not the case.

To illustrate the typical problems encountered if one uses a standard Krylov subspace method to solve the linear systems
required to apply (A � r)�1, we considered the application of this procedure to finding the smallest nine eigenvalues of a
numerical discretization of the problem (�D � cos(2px))u(x,y) = ku(x,y) where D is the two-dimensional Laplace operator,
(x,y) 2 [0,1] � [0,1] and u(x,y) is periodic in both coordinate directions. An eighth order finite difference approximation to
the second derivatives with a mesh size of h = .01 in each coordinate direction was used. The resulting discrete linear oper-
ator is represented by a sparse 104 � 104 matrix. This problem was selected as a test case because it possess both multiple

eigenvalues and eigenvalues that are very close together, in fact, the relative gap size, kiþ1�ki
kmax�kmin

��� ���, between distinct eigenvalues

of interest was O(10�7).
In Table 1 we present the results of numerical experiments in which standard Conjugate-Gradients (CG) and precondi-

tioned Conjugate-Gradients (PCCG) were used to solve the requisite linear systems of equations with a stopping tolerance
of 1 � 10�7. In this table are listed the number of inverse subspace iterations required to obtain approximations to the lowest
nine eigenvalues with a relative error less than 2.5 � 10�6, the maximal number of CG or PCCG iterations required to solve
any one of the requisite linear systems of equations and the total number of applications of the operator A and the precon-
ditioner eA�1. The preconditioner, eA�1, used was a symmetrized version of one sweep of Gauss–Seidel relaxation [10]. Each
application of the preconditioner was counted as equivalent to one application of A so the values listed in the table are the
sum of the total number of applications of A and eA�1.

As expected, as the shift is chosen for optimal convergence of the inverse subspace iteration procedure, the number of
inverse iterations required decreases and the number of iterations required to solve the requisite linear system increases.
Interestingly, when CG is used, these two opposing effects appear to cancel each other out, so that for a reasonably large
range of shifts the total number of applications of the operator is approximately constant. The preconditioned iterative
method was more sensitive to the use of shifts near kmin, and in fact, as the maximal number of any single PCCG computation
was limited to 1000 iterations, these results indicate that the PCCG method did not always converge. This latter result is an
indicator of the extra difficulties involved when trying to develop effective preconditioners for the iterative solution of the
linear systems of inverse subspace iteration.

Although a large number of Conjugate-Gradient iterations were required for the solution of the linear systems of
this test problem, it is worth noting that the overall inverse subspace iteration procedure was still much more effi-
cient than one utilizing a dense matrix eigensystem procedure. Specifically, on a computer with an Intel Xeon CPU
running at 3.40 GHz the time for computing the lowest nine eigenvalues and associated eigenvectors using the LA-
PACK routine DSYEVX [2] was 23.0 min, while inverse subspace iteration with standard Conjugate-Gradients required
only 0.2 min.
3. Rayleigh–Chebyshev procedure

While the above results indicate the problems that arise when using iterative methods to solve the linear systems of in-
verse subspace iteration, they also show that the procedure is ultimately successful. Even if one terminates a linear system
solver before convergence, one often finds that the overall inverse subspace iteration procedure still converges. At each iter-
ation, the Conjugate-Gradient method approximates the action of (A � r)�1 on a vector in Sm�1 by an element of a Krylov
subspace—a polynomial in the operator times a given vector. Thus, we infer that it is a good idea from the viewpoint of
iteration results with varying shift factor r = kmin � a(kmax � kmin). The maximal number of CG or PCCG iterations listed is the maximal number of
ns required for any single system solution occurring during the inverse iteration procedure.

#Inverse iterations max CG iterations A applies (CG) max PCCG iterations A; eA�1 applies (PCCG)

1082 27 55579 11 204592
117 84 25237 31 60099

21 219 19686 88 28575
11 335 18125 195 29797
10 373 17622 310 37980
10 419 17616 1000 57954
10 517 18257 1000 61188
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inverse iteration to transform Sm�1 by a polynomial in the operator, but it appears to be bad idea to construct that polynomial
from the Conjugate-Gradient solution process. Thus, to avoid the difficulties associated with using iterative procedures to
apply (A � r)�1 to Sm�1 we utilize polynomial transformations of Sm�1, but determine the polynomials explicitly rather than
implicitly through an iterative solution procedure.

The motivation for the procedure for selecting the required polynomial transformations can be obtained by understand-
ing the derivation of the error bound for subspace iteration (see [14] for a particularly good treatment), however, rather than
repeat this material, we motivate the procedure from an intuitive perspective. Assuming that r < kmin then the convergence
factors for inverse subspace iteration, ki�r

kMþ1�r

��� ��� can be understood to arise because the application of (A � r)�1 to a vector in
Sm�1 amplifies its ith eigenvector coefficient by 1

ki�r while the orthogonalization step causes this amplification to be relative to
the (larger) factors 1

kj�r ; j 6 M. Hence one expects an effective damping of the ith coefficient for i > M of the vectors in Sm�1 to

be determined by the ratio of these amplification factors, specifically
Fig. 1.
eigenve
eigenva
1
ki�r

� �
1

kj�r

� �
0
@

1
A ¼ kj � r

ki � r

� �
j ¼ 1 . . . M i > M
The largest of these damping factors, and that which dominates the convergence behavior, occurs when i = M + 1 and hence
the factors (2) are obtained.

A fundamental observation is that the convergence factors are determined by the ratios of the values f ðkiÞ
f ðkjÞ

for j = 1 . . .M,
i > M and where f ðxÞ ¼ 1

x�r. As noticed in early work by Lanczos in [12], and subsequently by many others, instead of using
the operator f(A) = (A � r)�1, one can use a polynomial operator p(A) where p(x) is chosen to have qualitative features similar
to those of 1

x�r over the range [kmin,kmax]. If such polynomial operators are used, then the convergence factors will be deter-
mined by ratios pðkiÞ

pðkjÞ
for j = 1 . . .M and i > M. If the polynomial can be chosen so that all these ratios are less than one, then the

iteration will be convergent.
In Fig. 1 we display the function f ðxÞ

f ðkminÞ
over the range [kmin,kmax] with r chosen to be slightly less that kmin. Also plotted is a

polynomial pðxÞ
pðkminÞ

where p(x) has the same qualitative features as 1
x�r. Specifically, p(x) has the property that it attains its larg-

est values at the smallest eigenvalues kj for j = 1. . .3 and the jpðkiÞ
pðkjÞj

< 1 for j 6 3 and i > 3. The plots of f(x) and p(x) are both

normalized by their maximal values to facilitate a visual comparison of the convergence factors that would result through
their use. In particular, for the indicated eigenvalues, one would expect the convergence factors obtained with p(x) to be al-
most the same as the convergence factors obtained with f(x).

The utility of using a polynomial function of A instead of a rational function of A is immediately apparent—no inverses
are required. The difficulty is in determining the polynomial operators, a difficulty that arises because the best choices
depend upon the knowledge of the eigenvalues of A, and these are the values that one is trying to compute. In the
Rayleigh–Chebyshev procedure we present here, the polynomials are from a family of second kind Chebyshev polynomials
pm(x) where specific parameters associated with these polynomials are chosen using eigenvalue estimates from the
Rayliegh–Ritz approximation using the vectors in the subspace Sm. The use of Chebyshev polynomials is not new, and in
fact these are the polynomials that Lanczos originally suggested in [12]. What is new is adaptively determining the
polynomials at each step using information from the Rayleigh–Ritz procedure in such a way that one has guaranteed
convergence.

Since the determination of the polynomials is integrated into an overall iterative procedure, before describing the details
of selecting these polynomials we outline the simplest form of the Rayleigh–Chebyshev procedure.

Rayleigh–Chebyshev Iteration
Given an initial collection of M + P vectors (P P 1), S0, and an estimate of kmin and kmax so that p0(x) can be determined,

then the Rayleigh–Chebyshev iteration consists of a repetition of the following steps.
λmaxλmin

f(x)/f(λmin)
p(x)/p(λ min)
p(λj) / p(λ min)

-0.25

0

0.25

0.5

0.75

1

Comparison of functions used for subspace transformation. The application of the transformation to a vector in the subspace amplifies its ith
ctor component by f(ki) or p(ki). Convergence factors are determined by the ratio of the amplification of the components associated with the larger
lues to the amplification of components associated with the smaller eigenvalues.



ðaÞ Compute Vm ¼ pm�1ðAÞSm�1 ð3Þ

(b) Orthonormalize Vm ¼ QmRm by modified Gram–Schmidt.
(c) Form Hm ¼ Q T

mAQm.
(d) Diagonalize Hm ¼ GT

mHmGm.
(e) Determine pmðxÞ from hMþP; kmin and kmax.
(f) Form Sm ¼ QmGm the Rayleigh–Ritz approximations to the eigenvectors and test for the convergence of approximate

eigenvalues hm
i ; i ¼ 1 . . . M. If convergence has not been obtained, repeat iteration starting with (a) and m ¼ mþ 1.

In this procedure we have included the use of P P 1 ‘‘buffer” vectors. This is done to ensure that the particular method for
choosing the polynomials pm(x) leads to guaranteed convergence of the iterative process.

With the choice of Chebyshev polynomials described in the next section, the application of the polynomial pm(A) to vec-
tors in Sm can be implemented using a two-term vector recurrence with one matrix–vector product required per recurrence
step. Thus, if the number of non-zero elements in each row of the matrix is bounded independently of the system size N, then
the computational cost of the Rayleigh–Chebyshev method is O(N) per subspace iteration step, with a constant depending
upon the degree of the polynomial and the number of vectors in the subspace.

Both this procedure and an inverse subspace iteration procedure in which the linear systems are solved via Krylov sub-
space methods transform the subspace Sm�1 using a polynomial in the operator, a polynomial that can change at each step.
However, in the Rayleigh–Chebyshev procedure the same polynomial is applied to all vectors in Sm�1, and the polynomials
are determined using eigenvalue estimates obtained from the Rayleigh–Ritz procedure rather than implicitly as a conse-
quence of the iterative solution procedure used to apply (A � rI)�1. This aspect of the method is significant for those cases
when the fraction of the non-zero elements in each row of the matrix is not particularly small. In such cases one often seeks
to improve computational efficiency by utilizing multiple processors, and their use is facilitated when the polynomial oper-
ator is the same for all vectors in the subspace. Also, as can be inferred from the structure of (3), the procedure can be readily
implemented as a variant of a standard inverse subspace iteration procedure.

3.1. Polynomial selection

The selection of the polynomials pm used at step (e) of the Rayleigh–Chebyshev iteration (3) require estimates of kmin and
kmax. There are many ways in which one can obtain such estimates, however, we have found that using the largest and small-
est eigenvalues of the tridiagonal matrix obtained from a classical Lanczos procedure to be an effective method for comput-
ing these values.

In order to insure that the polynomials used in (3) lead to a convergent process, we require that every polynomial pm used
in the iteration satisfy the following two properties
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ðaÞ jpmðxÞj > jpmðyÞj for all x 2 ½kmin; k
�� and y 2 ðk�; kmax�

ðbÞ pmðxÞ is monotone over ½kmin; k
��

ð4Þ
where k* is a value (which may depend upon m), such that kj < k* for j = 1. . .M.
As suggested by Lanczos in [12], a particularly useful family of polynomials that can be used to satisfy these conditions are

the Chebyshev polynomials. Specifically, let Cn(x) denote the nth Chebyshev polynomial of the second kind that has been
shifted and scaled to the interval [0,1]. These polynomials are defined by the recurrence
C0ðxÞ ¼ 1
C1ðxÞ ¼ 1� 2x

C2ðxÞ ¼
2
3

� �
ð2� 4xÞC1ðxÞ �

1
3

� �
C0ðxÞ

..

.

CnðxÞ ¼
n

nþ 1

� �
ð2� 4xÞ Cn�1ðxÞ �

n� 1
nþ 1

� �
Cn�2ðxÞ

ð5Þ
The first step in creating the required polynomials from this set consists of determining, for each degree n P 2, a linear
transformation, ln(x) so that the polynomial qn(x) = Cn(ln(x)) satisfies the conditions (4), for some value k�n. Let cn be the second
largest root of Cn(x), and define ln(x) by
lnðxÞ ¼
cn

kmax � kmin

� �
½x� kmin� ð6Þ
The polynomial qn(x) = Cn(ln(x)) then satisfies (4) with value k�n given by
k�n ¼
a�n½kmax � kmin� þ kmin

cn

� �
ð7Þ
where
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a�n ¼ C�1
n jCnðrnÞjð Þ ð8Þ
with rn the first root of C0nðxÞ, and a�n the value of C�1
n closest to 0. In Fig. 2a, the values of cn, rn and a�n are shown for C6(x) and

in Fig. 2b, k�n is shown for the polynomial q6(x) = C6(l6(x)).
A consequence of this construction is that if for some degree n the lowest M0 eigenvalues of A are contained in ½kmin; k

�
nÞ

with k�n defined by (7) then the iteration (3) applied with a transformation defined by pm(x) = qn(x) on a subspace of size M0

will converge to a subspace consisting of the M0 eigenvectors corresponding to those lowest M0 eigenvalues. Thus, the degree
n P 2 should be chosen so that kj < k�n for j 6M. There will always be an n for which this inequality is true, since q2(x) is
monotonically decreasing over the interval [kmin,kmax]. In addition, to obtain a rapidly convergent procedure, one should also
choose, if possible, n sufficiently large so that ki > k�n for i > M. Fig. 2 illustrates the desired distribution of eigenvalues with
respect to the parameters k�n.

Unfortunately, the optimal choice of polynomial degree depends upon the values one is trying to compute, in particular,
the values of kj, j 6M. One has to be somewhat careful in choosing the degree, as too small a value of n results in only a mod-
est acceleration of convergence, and too large an n leads to an iteration that can converge to eigenpairs for eigenvalues that
are not the desired ones. To overcome this difficulty we adapt the polynomial degree based upon estimates of the eigen-
values that are extracted from the approximations at each step of the iterative process (3).

Specifically, at each step of the iteration (3) approximate eigenvalues hm
i for i = 1 . . .M + P are available. The extremal prop-

erties of the Rayleigh–Ritz approximations imply that ki 6 hm
MþP for i = 1 . . .M + P, and thus the previous considerations lead

one to the following procedure for selecting pm(x) in step (e).

� For m = 0, choose pm(x) = q2(x) = C2(l2(x))
� For m > 0, choose pm(x) = qn(x) = Cn(ln(x)) where the degree n is selected so that k�nþ1 < hm

MþP 6 k�n where the values of k�n and
k�nþ1 are determined by (7).

If A has distinct eigenvalues and the initial vectors contain components in the directions of the desired eigenvectors, then
as m ?1, Sm will converge to a subspace containing the eigenvectors corresponding to the lowest M eigenvectors. The need
for the use of at least one buffer vector, e.g. P P 1, is to insure that there is a strict inequality kM < k�n, so that the convergence
rn

α*
n = Cn

-1(|Cn (rn)|)

γn

0 0.2 0.4 0.6 0.8 1

C
n (

x)

-0.25

0
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0.5

0.75

1

x
0 0.2 0.4 0.6 0.8 1

Fig. 2a. Cn(x) with n = 6, a Chebyshev polynomial of the second kind scaled and shifted to [0,1].

 λ1   ...  λM  < λ*
n

λM+1 ...  λN  > λ*
n

x λmaxλmin

λ*
n

0 0.2 0.4 0.6 0.8 1

q6 (x
)

-0.25

0

0.25

0.5

0.75

1

Fig. 2b. q6(x) = C6(l6(x)) with the linear transformation l6(x) selected so q6 ðki Þ
q6ðkjÞ

��� ��� < 1 for j 6M and i > M.
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factors pmðkiÞ
pmðkjÞ

��� ��� for j 6M and i > M at each step are strictly less than one. As the iteration (3) progresses, the degree of pm in-

creases as the accuracy with which hm
MþP approximates of kM+P. Except for the case to be noted below, this degree will be

bounded by a value nmax for which k�nmaxþ1 < kMþP 6 k�nmax
. Thus, the asymptotic convergence behavior will be determined

by the convergence factors qnmax ðkiÞ
qnmax ðkjÞ

��� ��� for j 6M and i > M. Since the polynomial qnmax ðxÞ is not monotone for ki > knmax it is dif-

ficult to determine a general bound for the convergence factors other than that they are all strictly less than one. However, as
will be seen in the computational experiments, once the maximal degree is reached the convergence is very rapid, and ob-
served convergence factors are often close to .22 (a value expected from the properties of the Chebyshev polynomials used in
the procedure).

When A has eigenvalues of multiplicity greater than one, then the iteration will converge for the eigenpairs associated
with all eigenvalues less than ~kMþP where ~kMþP is the value of the (M + P)th eigenvalue when they are counted with multi-
plicity. The most serious consequence associated with the convergence in the case of eigenvalues of multiplicity greater than
one is that one may not identify a full set of eigenvectors associated with the largest eigenvalue. This problem can be de-
tected and then overcome by either increasing the dimension of the approximating subspace or by utilizing a deflation
procedure.

There is one problem that can arise in the determination of the polynomials, and that occurs when the dimension of the
subspace used, M + P, is less than the multiplicity of the smallest eigenvalue. When this occurs, the polynomial degree that is
determined will increase without bound and the convergence factors will tend to zero (e.g. the Rayleigh–Ritz approximation
of the eigenvalues will converge with ever increasing speed). This problem can therefore be detected by estimating the con-
vergence factors of the approximate eigenvalues, and if they are uniformly less than a specified factor (we use .2), then one
stops increasing the degree of the polynomial used in the procedure.

3.2. Deflation and buffer dimension selection

When the dimension of the subspaces Sm is insufficient to compute all the desired eigenvector pairs at once, then one can
add a deflation step to the procedure to compute additional eigenvectors. Specifically, if one uses a subspace of size eM þ P
where eM < M and P P 1 ‘‘buffer” vectors are used, then the iteration (3) converges to eigenpairs associated with the smallesteM eigenvalues. After convergence, the procedure is restarted with a new value of kmin being set equal to keM and the first P vec-
tors of the approximating subspace being taken as the eigenvectors associated with the largest P eigenvalues of the previous
iterates (e.g. the buffer vectors are used as initial guesses). At each step in the restarted application, the vectors in the subspace
are orthogonalized with respect to the collection of known eigenvectors. This process computes the next eM eigenpairs. If more
eigenpairs are desired, the process is repeated as many times as necessary, each time computing the next eM eigenpairs.

The use of at least one buffer vector, P P 1, is required to guarantee convergence of the iterative process, but one has the
option of specifying a greater number of ‘‘buffer” vectors. Using a greater number of buffer vectors can improve the conver-
gence behavior, and can also help avoid problems in the case of operators with eigenvalues of multiplicity greater than one.
The improvement in convergence behavior follows because the convergence factors for first M eigenpairs is a function of the
gap between the first M eigenvalues and those greater than M + P—increasing P can increase the gap size. The amount of
improvement in convergence factors depends upon the specific eigenvalue distribution of the operator A and the properties
of pm(ki), and as such, this buffer size is typically an experimentally determined parameter. The cost of using more ‘‘buffer”
vectors is an increase in work associated with a larger dimension to the subspace Sm, and this must be weighed against any
reduction in the number of iterations required. However, if one is computing more than just a few eigenpairs and deflation is
used, the negative consequences of using a few buffer vectors is negligible as they become initial guess vectors when the
deflation steps are incorporated.

With a deflation step included the Rayleigh–Chebyshev iteration has the following form:
Rayleigh–Chebyshev iteration with deflation
Given an initial collection, S0, of eM þ P vectors (P P 1), an estimate of kmin and kmax so that p0(x) = q2(x) = C2(l2(x)) can be

determined, and an initially empty collection of eigenvectors W, then the Rayleigh–Chebyshev procedure with deflation has
the general structure
ðaÞ Compute V 0m ¼ pm�1ðAÞSm�1: ð9Þ

0
(b) Compute Vm ¼ components of Vm orthogonal to W.

(c) Orthonormalize Vm ¼ QmRm by modified Gram–Schmidt.
(d) Form Hm ¼ Q T

mAQm.
(e) Diagonalize Hm ¼ GT

mHmGm.
(f) Determine pmðxÞ from heMþP ; kmin and kmax. For m ¼ 0, choose pmðxÞ ¼ q2ðxÞ ¼ C2ðl2ðxÞÞ and for m > 0, choose

pmðxÞ ¼ qnðxÞ ¼ CnðlnðxÞÞ where the degree n is selected so that k�nþ1 < hmeMþP
6 k�n where the values of k�n and k�nþ1

are determined by (7).
(g) Form Sm ¼ QmGm the Rayleigh–Ritz approximations to the eigenvectors and test for the convergence of approximate

eigenvalues hm
i ; i ¼ 1 . . . eM . If convergence has not been obtained, repeat iteration starting with (a) and m ¼ mþ 1.

(h) Update the collection of computed eigenpairs. If the smallest eM eigenvalues have converged, add the correspond-
ing eigenvectors to W, set kmin ¼ keMþ1, and reinitialize S0 by setting the first P vectors of S0 to correspond to the
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largest P eigenvectors computed in (g) and fill out the remaining dimensions of S0with random initial vectors
orthogonal to those in W. Repeat iteration starting with (a), m ¼ 1, and p0ðxÞ determined from the new value of kmin.

This iteration is repeated until W contains the desired number of eigenvectors corresponding to the smallest eigenvalues.
4. Computational results

The first computational result concerns the test problem of Section 2, the computation of the lowest nine eigenvalues of
the operator (�D � cos (2px)) u(x,y) = ku(x,y) where D is the two-dimensional Laplace operator, (x,y) 2 [0,1] � [0,1] and
u(x,y) is periodic in both coordinate directions. Other than a stopping condition, the only free parameters of the procedure
that must be selected are the size of the subspace to capture the eigenvectors and the number of buffer vectors to use. We
used a single subspace of dimension 9 to capture the eigenvalues (M = 9) and chose the smallest number P = 1 of buffer vec-
tors. The required eigenvalue estimates kmin and kmax for starting the computational process were calculated as the extremal
eigenvalues of the tridiagonal matrix obtained from a classical Lanczos procedure. The Rayleigh–Chebyshev iteration was
stopped when the relative difference between eigenvalue estimates was uniformly less than 1 � 10�5. This value was se-
lected because it resulted in eigenvalues with relative errors that were less than 2.5 � 10�6—the size of the errors in the
eigenvalues obtained with the inverse subspace iteration procedure described in Section 2. Each iteration of the Ray-
leigh–Chebyshev procedure requires the application of pm(A) to a collection of vectors. The application of this polynomial
was implemented using a two-term recurrence based on the recurrence that the Chebyshev polynomials satisfy (5).

16 iterations were required obtain a relative error of the eigenvalues to be less than 2.5 � 10�6. This compares quite
favorably with the 10 iterations that was the smallest number required by inverse subspace iteration with shift. The total
number of applications of the operator A (including the cost of the extremal eigenvalue estimation) was 4115, significantly
less than 17616, the best results presented in Table 1. The number of applications of the operator A required to obtain the
initial extremal eigenvalue estimates was 165—only 4% of the total computational cost of the procedure.

The behavior of the iterative procedure is revealed by considering the degree of the polynomial pm used at a given step,
and the reduction in the relative difference between eigenvalue estimates between steps, a value that was monitored to as-
sess convergence. These quantities are plotted in Figs. 3a and 3b. During the early stages of the iteration, the eigenvalue esti-
mates do not improve very much, but work is being accomplished as the polynomial degree is rapidly increasing to its
optimal value. Once the polynomial degree reaches its optimal value then convergence of the eigenvalue estimates occurs
quickly – in about as many iterations as are required by an inverse subspace iteration with optimal shift. An estimate of
the dominant convergence factor based upon the data at later steps in Fig. 3b is 0.16—thus the procedure converges with
an error that is approximately proportional to (.16)m.

One of the advantages of the Rayliegh–Chebyshev method is that creating a distributed (parallel) implementation is
rather straight forward. The core computational tasks are those associated with applying a polynomial in a linear operator
to a collection of vectors, orthogonalizing a set of vectors using a modified Gram–Schmidt process and accumulating a col-
lection of vectors to form the desired eigenvectors. These are standard computational linear algebra tasks and one can make
use of libraries that provide such functionality and are optimized for distributed processor machines. Additionally, the prob-
lem of load balancing that arises when iterative methods are used with inverse iteration does not arise here. The polynomial
in the operator that is applied to the approximating subspace is known in advance of its application and is the same for all
vectors in the subspace.

Our interest in a distributed implementation of the Rayleigh–Chebyshev method arose out of a need to determine the
lowest eigenvalues and eigenvectors of the linear operator arising from a Full Configuration Interaction treatment of the
D
eg

re
e 

of
 p

ν (
x)

0

10

20

30

40

Step
0 5 10 15 20

Fig. 3a. Chebyshev polynomial degree selected at each subspace iteration step for the test problem of Section 2.
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Fig. 3b. Maximal relative difference between computed eigenvalues at each subspace iteration step for the test problem of Section 2.
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multi-particle Schroedinger operator. The dimension of the associated matrix was approximately 106 � 106 and contained
3.7 � 109 non-zero elements. The large memory requirements associated with computing and storing the matrix entries dic-
tated that a distributed (parallel) implementation of the procedure be used.

In our implementation we took advantage of the PETSc library [4] which contains support for MPI based distributed vec-
tors and sparse distributed matrices. The linear operator was represented as a PETSc sparse distributed matrix with an equal
number of contiguous rows of the matrix assigned to each processor. For our particular operator, this distribution resulted in
a nearly equal number of non-zero elements on each processor. The PETSc routines for distributed vector operations and for
applying a distributed sparse matrix to a distributed vector were used and so ‘‘low level” MPI programming was kept to a
minimum. As with the previous example, the estimates of kmin and kmax were computed as the extremal eigenvalues of the
tridiagonal matrix arising from a classical Lanczos procedure. The distributed implementation of the latter was also easily
accomplished using the PETSc library.

The smallest five eigenvalues and eigenvectors were computed and the iteration was stopped when the relative differ-
ence between successive eigenvalue estimates was less than 0.5 � 10�6. The degree of the polynomial used at each step
and the maximal relative difference between eigenvalues at each step are presented in Figs. 4a and 4b. These results show
the same qualitative behavior of the iteration as in the previous example—in the early stages there is not much improve-
ment, but the degree of pm increases. Once this polynomial has reached it’s maximal degree, then the iteration converges
quite rapidly. Unlike the first test problem, where the relative gaps between distinct eigenvalues was on the order of
10�7 the relative gaps between eigenvalues for this problem were on the order of 10�2. This more favorable eigenvalue dis-
tribution explains the lower degree of the polynomial pm determined by the iteration. An estimate of the dominant conver-
gence factor based upon the data in the later steps in Fig. 4b is 0.27, which explains why more Rayleigh–Chebyshev steps
were taken, 18, than in the previous example. However, the total number of operator applications, 788, was much lower
(with 50 of those applications being required by the Lanczos estimation procedure).

While our principle interest in the use of a distributed implementation of the Rayleigh–Chebyshev procedure was to en-
able computations that had large memory requirements, we were also interested in the impact that using multiple CPU’s
would have on the total computation time. These computations were carried out on a cluster consisting of nine dual
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Fig. 4a. Chebyshev polynomial degree selected at each subspace iteration step for a Full Configuration Interaction problem.



m
ax

 (
 | 

θ j
ν 

+
1 -

 θ
 j

ν |
  /

 | 
θ j

ν 
+

1| 
)

10-6

10-5

10-4

10-3

0.01

0.1

1

10

Step
0 5 10 15 20

Fig. 4b. Maximal relative difference between computed eigenvalues at each subspace iteration step for a Full Configuration Interaction problem.
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processor nodes with Intel Xeon CPUs running at 3.40 GHz and 8 GB of memory per node. We were thus able to run the same
computation (one whose total memory requirements just fit within the 72 GB limit) using either 9 or 18 processors. The
computation time when using 9 processors was 40.01 min and 27.7 min when using 18 processors. Since the parallel imple-
mentation was just a serial implementation modified to use PETSc operations and no specific algorithmic changes were
made to enhance parallel performance these results, we find these results quite encouraging. We expect that with an imple-
mentation that specifically targets distributed architecture machines, one would be able to improve the parallel efficiency.
5. Conclusion

The paper is concerned with the task of computing a modest number of the smallest eigenvalues and associated eigen-
vectors of Hermitian operators. It is particularly concerned with this task for operators that have high dimension, are sparse,
and may possess eigenvalues with multiplicity greater than one. A procedure commonly used to accomplish this task is in-
verse subspace iteration with shift, and results have been shown that indicate the typical problems that occur when a stan-
dard Krylov subspace method is employed to solve the requisite systems of linear equations at each step. Since such a
procedure is ultimately just an iterative process where an approximating subspace is transformed by a polynomial in the
operator, one concludes that the problem is occurring because the implicit determination of the polynomial transformation
by the Krylov subspace solution procedure is yielding ineffective transformations.

The method presented to overcome such problems retains the idea of using polynomial transformations of an approxi-
mating subspace but adaptively determines the polynomial transformation using information from the Rayleigh–Ritz
approximation of the eigenvalues. The adaptation is done in such a way that, under mild conditions on the properties of
the distribution of eigenvalues of A and the choice of initial subspace, the overall iterative procedure will be guaranteed
to converge to a subspace containing the desired eigenvectors.

The resulting method has several desirable properties. First, it can be implemented as a minor modification of inverse
subspace iteration. One need only replace a call to a routine that solves the requisite linear systems with one that applies
a polynomial in the operator times a collection of vectors. The method is robust, converges with acceptably rapidity, and
can easily handle operators with eigenvalues of multiplicity greater than one. The method is well suited for implementation
on multi-processor machines since the polynomial transformation of the subspace required at each step of the iteration is
known in advance of the application of the transformation, and the transformation is identical for all vectors in the subspace.

There is an initial cost associated with the procedure, that of obtaining estimates of the minimal and maximal
eigenvalues. However, as the computational results show, using the classical Lanczos procedure to obtain these is quite
effective, and does not contribute significantly to the overall cost of the procedure. The numerical results presented here,
as well as results presented in [1] demonstrate that the procedure scales well to very large eigenvalue problems, and good
success has been obtained with its use on eigenproblems related to the single particle Schroedinger operators in three
dimensions as well as the very large eigensystem problems occurring in an FCI treatment of the multi-particle Schroedinger
operator.
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